On Saturday Charlie and I talked about what the maximum number of samples we could reasonably process in the evening with bench-top sensors would be. We decided that 20 would be the upper limit. In the evening we will be collecting pH, conductivity, munsell color, fertility and organic content data. The most time-intensive test is organic content, which requires the sample to settle in water for up to 30 minutes so that the organic content can rise to the top. It will be very important for us to test the bench-top sensors with a large volume of samples before we take it into the field.
This week, the SCIO was ordered. I have been looking through the developer blog to see if anyone has used the SCIO for applications like ours. So far I have found that there is an interest but most people don’t have access to higher-caliber IR spectroscopy technology for calibration. However, we are fortunate enough to be working right down the hall from Mike Deibel. Mike has offered to let us use his Fluke portable FTIR to calibrate the SCIO. The developer SDK workflow has three steps, using the SCIO itself, the ‘development model’ web app, and the mobile developer package. The developer web app offers control of the algorithms and statistical methods that the SCIO uses to determine the composition of a sample. Using the spectra generated by the FTIR I think we can definitely ‘teach’ the SCIO to recognize the chemical signatures of different nutrients. The mobile app SDK is open and will ultimately allow Field Day to communicate with the SCIO.